Category

Leadership on the Edge

Learning Technologies 2017 in Olympia London Video of the session: Warning over an hour in length.

Discusses how discomfort, disconnection and dislocation lead to discovery.

Posted on

Wonderful Piece of Journalism by John Walsh

How much does it hurt?

Aching, throbbing, searing, excruciating – pain is difficult to describe and impossible to see. So how can doctors measure it? John Walsh finds out about new ways of assessing the agony.

One night in May, my wife sat up in bed and said, “I’ve got this awful pain just here.” She prodded her abdomen and made a face. “It feels like something’s really wrong.” Woozily noting that it was 2am, I asked what kind of pain it was. “Like something’s biting into me and won’t stop,” she said.

“Hold on,” I said blearily, “help is at hand.” I brought her a couple of ibuprofen with some water, which she downed, clutching my hand and waiting for the ache to subside.

An hour later, she was sitting up in bed again, in real distress. “It’s worse now,” she said, “really nasty. Can you phone the doctor?” Miraculously, the family doctor answered the phone at 3am, listened to her recital of symptoms and concluded, “It might be your appendix. Have you had yours taken out?” No, she hadn’t. “It could be appendicitis,” he surmised, “but if it was dangerous you’d be in much worse pain than you’re in. Go to the hospital in the morning, but for now, take some paracetamol and try to sleep.”

Barely half an hour later, the balloon went up. She was awakened for the third time, but now with a pain so savage and uncontainable it made her howl like a tortured witch face down on a bonfire. The time for murmured assurances and spousal procrastination was over. I rang a local minicab, struggled into my clothes, bundled her into a dressing gown, and we sped to St Mary’s Paddington at just before 4am.

The flurry of action made the pain subside, if only through distraction, and we sat for hours while doctors brought forms to be filled, took her blood pressure and ran tests. A registrar poked a needle into my wife’s wrist and said, “Does that hurt? Does that? How about that?” before concluding: “Impressive. You have a very high pain threshold.”

The pain was from pancreatitis, brought on by rogue gallstones that had escaped from her gall bladder and made their way, like fleeing convicts, to a refuge in her pancreas, causing agony. She was given a course of antibiotics and, a month later, had an operation to remove her gall bladder.

“It’s keyhole surgery,” said the surgeon breezily, “so you’ll be back to normal very soon. Some people feel well enough to take the bus home after the operation.” His optimism was misplaced. My lovely wife, she of the admirably high pain threshold, had to stay overnight, and came home the following day filled with painkillers; when they wore off, she writhed with suffering. After three days she rang the specialist, only to be told: “It’s not the operation that’s causing discomfort – it’s the air that was pumped inside you to separate the organs before surgery.” Like all too many surgeons, they had lost interest in the fallout once the operation had proved a success.

During that period of convalescence, as I watched her grimace and clench her teeth and let slip little cries of anguish until a long regimen of combined ibuprofen and codeine finally conquered the pain, several questions came into my head. Chief among them was: Can anyone in the medical profession talk about pain with any authority? From the family doctor to the surgeon, their remarks and suggestions seemed tentative, generalised, unknowing – and potentially dangerous: Was it right for the doctor to tell my wife that her level of pain didn’t sound like appendicitis when the doctor didn’t know whether she had a high or low pain threshold? Should he have advised her to stay in bed and risk her appendix exploding into peritonitis? How could surgeons predict that patients would feel only ‘discomfort’ after such an operation when she felt agony – an agony that was aggravated by fear that the operation had been a failure?

I also wondered if there were any agreed words that would help a doctor understand the pain felt by a patient. I thought of my father, a GP in the 1960s with an NHS practice in south London, who used to marvel at the colourful pain symptoms he heard: “It’s like I’ve been attacked with a stapler”; “like having rabbits running up and down my spine”; “it’s like someone’s opened a cocktail umbrella in my penis...” Few of them, he told me, corresponded to the symptoms listed in a medical textbook. So how should he proceed? By guesswork and aspirin?

There seemed to be a chasm of understanding in human discussions of pain. I wanted to find out how the medical profession apprehends pain – the language it uses for something that’s invisible to the naked eye, that can’t be measured except by asking for the sufferer’s subjective description, and that can be treated only by the use of opium derivatives that go back to the Middle Ages.

§

When investigating pain, the basic procedure for clinics everywhere is to give a patient the McGill Pain Questionnaire. This was developed in the 1970s by two scientists, Dr Ronald Melzack and Dr Warren Torgerson, both of McGill University in Montreal, and is still the main tool for measuring pain in clinics worldwide.

Melzack and his colleague Dr Patrick Wall of St Thomas’ Hospital in London had already galvanised the field of pain research in 1965 with their seminal ‘gate control theory’, a ground-breaking explanation of how psychology can affect the body’s perception of pain. In 1984 the pair went on to write Wall and Melzack’s Textbook of Pain, the most comprehensive reference work in pain medicine. It’s gone through five editions and is currently over 1,000 pages long.

In the early 1970s, Melzack began to list the words patients used to describe their pain and classified them into three categories: sensory (which included heat, pressure, ‘throbbing’ or ‘pounding’ sensations), affective (which related to emotional effects, such as ‘tiring’, ‘sickening’, ‘gruelling’ or ‘frightful’) and lastly evaluative (evocative of an experience – from ‘annoying’ and ‘troublesome’ to ‘horrible’, ‘unbearable’ and ‘excruciating’).

You don’t have to be a linguistic genius to see there are shortcomings in this lexical smorgasbord. For one thing, some words in the affective and evaluative categories seem interchangeable – there’s no difference between ‘frightful’ in the former and ‘horrible’ in the latter, or between ‘tiring’ and ‘annoying’ – and all the words share an unfortunate quality of sounding like a duchess complaining about a ball that didn’t meet her standards.

But Melzack’s grid of suffering formed the basis of what became the McGill Pain Questionnaire. The patient listens as a list of ‘pain descriptors’ is read out and has to say whether each word describes their pain – and, if so, to rate the intensity of the feeling. The clinicians then look at the questionnaire and put check marks in the appropriate places. This gives them a number, or a percentage figure, to work with in assessing, later, whether a treatment has brought the patient’s pain down (or up).

A more recent variant is the National Initiative on Pain Control’s Pain Quality Assessment Scale (PQAS), in which patients are asked to indicate, on a scale of 1 to 10, how “intense” – or “sharp”, “hot”, “dull”, “cold”, “sensitive”, “tender”, “itchy”, etc – their pain has been over the past week.

The trouble with this approach is the imprecision of that scale of 1 to 10, where a 10 would be “the most intense pain sensation imaginable”. How does a patient ‘imagine’ the worst pain ever and give their own pain a number? Middle-class British men who have never been in a war zone may find it hard to imagine anything more agonising than toothache or a tennis injury. Women who have experienced childbirth may, after that experience, rate everything else as a mild 3 or 4.

I asked some friends what they thought the worst physical pain might be. Inevitably, they just described nasty things that had happened to them. One man nominated gout. He recalled lying on a sofa, with his gouty foot resting on a pillow, when a visiting aunt passed by; the chiffon scarf she was wearing slipped from her neck and lightly touched his foot. It was “unbearable agony”. A brother-in-law nominated post-root canal toothache – unlike muscular or back pain, he said, it couldn’t be alleviated by shifting your posture. It was “relentless”. A male friend confided that a haemorrhoidectomy had left him with irritable bowel syndrome, in which a daily spasm made him feel “as if somebody had shoved a stirrup pump up my arse and was pumping furiously”. The pain was, he said, “boundless, as if it wouldn’t stop until I exploded”. A woman friend recalled the moment the hem of her husband’s trouser leg snagged on her big toe, ripping the nail clean off. She used a musical analogy to explain the effect: “I’d been through childbirth, I’d broken my leg – and I recalled them both as low moaning noises, like cellos; the ripped-off nail was excruciating, a great, high, deafening shriek of psychopathic violins, like nothing I’d heard – or felt – before.”

A novelist friend who specialises in World War I drew my attention to Stuart Cloete’s memoir A Victorian Son (1972), in which the author records his time in a field hospital. He marvels at the stoicism of the wounded soldiers: “I have heard boys on their stretchers crying with weakness, but all they ever asked for was water or a cigarette. The exception was a man hit through the palm of the hand. This I believe to be the most painful wound there is, as the sinews of the arm contract, tearing as if on a rack.”

Is it true? Looking at the Crucifixion scene in Matthias Grünewald’s Isenheim Altarpiece (1512–16), you take in the horribly straining fingers of Christ, twisted around the fat nailheads that skewer his hands to the wood – and oh, God yes, you believe it must be true.

It seems a shame that these eloquent descriptions are reduced by the McGill Questionnaire to words like ‘throbbing’ or ‘sharp’, but its function is simply to give pain a number – a number that will, with luck, be decreased after treatment, when the patient is reassessed.

This procedure doesn’t impress Professor Stephen McMahon of the London Pain Consortium, an organisation formed in 2002 to promote internationally competitive research into pain. “There are lots of problems that come with trying to measure pain,” he says. “I think the obsession with numbers is an oversimplification. Pain is not unidimensional. It doesn’t just come with scale – a lot or a little – it comes with other baggage: how threatening it is, how emotionally disturbing, how it affects your ability to concentrate. The measuring obsession probably comes from the regulators who think that, to understand drugs, you have to show efficacy. And the American Food and Drug Administration don’t like quality-of-life assessments; they like hard numbers. So we’re thrown back on giving it a number and scoring it. It’s a bit of a wasted exercise because it’s only one dimension of pain that we’re capturing."

§

Pain can be either acute or chronic, and the words do not (as some people think) mean ‘bad’ and ‘very bad’. ‘Acute’ pain means a temporary or one-off feeling of discomfort, which is usually treated with drugs; ‘chronic’ pain persists over time and has to be lived with as a malevolent everyday companion. But because patients build up a resistance to drugs, other forms of treatment must be found for it.

The Pain Management and Neuromodulation Centre at Guy’s and St Thomas’ Hospital in central London is the biggest pain centre in Europe. Heading the team there is Dr Adnan Al-Kaisy, who studied medicine at the University of Basrah, Iraq, and later worked in anaesthetics at specialist centres in England, the USA and Canada.

Who are his patients and what kind of pain are they generally suffering from? “I’d say that 55 to 60 per cent of our patients suffer from lower back pain,” he says. “The reason is, simply, that we don’t pay attention to the demands life makes on us, the way we sit, stand, walk and so on. We sit for hours in front of a computer, with the body putting heavy pressure on small joints in the back.” Al-Kaisy reckons that in the UK the incidence of chronic lower back pain has increased substantially in the last 15–20 years, and that “the cost in lost working days is about £6–7 billion”.

Elsewhere the clinic treats those suffering from severe chronic headaches and injuries from accidents that affect the nervous system.

Do they still use the McGill Questionnaire? “Unfortunately yes,” says Al-Kaisy. “It’s a subjective measurement. But pain can be magnified by a domestic argument or trouble at work, so we try to find out about the patient’s life – their sleeping patterns, their ability to walk and stand, their appetite. It’s not just the patient’s condition, it’s also their environment.”

The challenge is to transform this information into scientific data. “We’re working with Professor Raymond Lee, Chair of Biomechanics at the South Bank University, to see if there can be objective measurement of a patient’s disability due to pain,” he says. “They’re trying to develop a tool, rather like an accelerometer, which will give an accurate impression of how active or disabled they are, and tell us the cause of their pain from the way they sit or stand. We’re really keen to get away from just asking the patient how bad their pain is.”

Some patients arrive with pains that are far worse than backache and require special treatment. Al-Kaisy describes one patient – let us call him Carter – who suffered from a terrible condition called ilioinguinal neuralgia, a disorder that produces a severe burning and stabbing pain in the groin. “He’d had an operation in the testicular area, and the inguinal nerve had been cut. The pain was excruciating: when he came to us, he was on four or five different medications, opiates with very high dosages, anticonvulsive medication, opioid patches, paracetamol and ibuprofen on top of that. His life was turned upside down, his job was on the line.” The utterly stricken Carter was to become one of Al-Kaisy’s big successes.

Since 2010, Guy’s and St Thomas’ has offered a residential programme for adults whose chronic pain hasn’t responded to treatment at other clinics. The patients come in for four weeks, away from their normal environment, and are seen by a motley crew of psychologists, physiotherapists, occupational health specialists and nursing physicians who between them devise a programme to teach them strategies for managing their pain.

© Matthew Richardson at Heart

Many of these strategies come under the heading of ‘neuromodulation’, a term you hear everywhere in pain management circles. In simple terms, it means distracting the brain from constantly brooding on the pain signals it’s getting from the body’s ‘periphery’. Sometimes the distraction is a cunningly deployed electric shock.

“We were the first centre in the world to pioneer spinal cord stimulation,” says Al-Kaisy proudly. “In pain occasions, overactive nerves send impulses from the periphery to the spinal cord and from there to the brain, which starts to register pain. We try to send small bolts of electricity to the spinal cord by inserting a wire in the epidural area. It’s only one or two volts, so the patient feels just a tingling sensation over where the pain is, instead of feeling the actual pain. After two weeks, we give the patient an internal power battery with a remote control, so he can switch it on whenever he feels pain and carry on with his life. It’s essentially a pacemaker that suppresses the hyperexcitability of nerves by delivering subthreshold stimulation. The patient feels nothing except his pain going down. It’s not invasive – we usually send patients home the same day.”

When Carter, the chap with the agonised groin, had failed to respond to any other treatments, Al-Kaisy tried his box of tricks. “We gave him something called a dorsal root ganglion stimulation. It’s like a small junction-box, placed just underneath one of the bones of the spine. It makes the spine hyperexcited, and sends impulses to the spinal cord and the brain. I pioneered a new technique to put a small wire into the ganglion, connected to an external power battery. Over ten days the intensity of pain went down by 70 per cent – by the patient’s own assessment. He wrote me a very nice email saying I had changed his life, that the pain had just stopped completely, and that he was coming back to normality. He said his job was saved, as was his marriage, and he wanted to go back to playing sport. I told him, ‘Take it easy. You mustn’t start climbing the Himalayas just yet.’” Al-Kaisy beams. “This is a remarkable outcome. You cannot get it from any other therapies.”

§

The greatest recent breakthrough in assessing pain, according to Professor Irene Tracey, head of the University of Oxford’s Nuffield Department of Clinical Neurosciences, has been the understanding that chronic pain is a thing in its own right. She explains: “We always thought of it as acute pain that just goes on and on – and if chronic pain is just a continuation of acute pain, let’s fix the thing that caused the acute and the chronic should go away. That has spectacularly failed. Now we think of chronic pain as a shift to another place, with different mechanisms, such as changes in genetic expression, chemical release, neurophysiology and wiring. We’ve got all these completely new ways of thinking about chronic pain. That’s the paradigm shift in the pain field.”

Tracey has been called the ‘Queen of Pain’ by some media commentators. She was, until recently, the Nuffield Professor of Anaesthetic Science and is an expert in neuroimaging techniques that explore the brain’s responses to pain. Despite her nickname, in person she is far from alarming: a bright-eyed, enthusiastic, welcoming and hectically fluent woman of 50, she talks about pain at a personal level. She has no problem defining the “ultimate pain” that scores 10 on the McGill Questionnaire: “I’ve been through childbirth three times, and my 10 is a very different 10 from before I had kids. I’ve got a whole new calibration on that scale.” But how does she explain the ultimate pain to people who haven’t experienced childbirth? “I say, ‘Imagine you’ve slammed your hand in a car door – that’s 10.’”

She uses a personal example to explain the way perception and circumstance can alter the way we experience pain, as well as the phenomenon of ‘hedonic flipping’, which can convert pain from an unpleasant sensation into something you don’t mind. “I did the London Marathon this year. It needs a lot of training and running and your muscles ache, and next day you’re really in pain, but it’s a nice pain. I’m no masochist, but I associate the muscle pain with thoughts like, ‘I did something healthy with my body,’ ‘I’m training,’ and ‘It’s all going well.’”

I ask her why there seems to be a gap between doctors’ and patients’ apprehension of pain. “It’s very hard to understand, because the system goes wrong from the point of injury, along the nerve that’s taken the signal into the spinal cord, which sends signals to the brain, which sends signals back, and it all unravels with terrible consequential changes. So my patient may be saying, ‘I’ve got this excruciating pain here,’ and I’m trying to see where it’s coming from, and there’s a mismatch here because you can’t see any damage or any oozing blood. So we say, ‘Oh come now, you’re obviously exaggerating, it can’t be as bad as that.’ That’s wrong – it’s a cultural bias we grew up with, without realising.” 

Recently, she says, there has been an explosion of understanding about how the brain is involved in pain. Neuroimaging, she explains, helps to connect the subjective pain with the objective perception of it. “It fills that space between what you can see and what’s being reported. We can plug that gap and explain why the patient is in pain even though you can’t see it on your X-ray or whatever. You’re helping to bring truth and validity to these poor people who are in pain but not believed.”

© Matthew Richardson at Heart

But you can’t simply ‘see’ pain glowing and throbbing on the screen in front of you. “Brain imaging has taught us about the networks of the brain and how they work,” she says. “It’s not a pain-measuring device. It’s a tool that gives you fantastic insight into the anatomy, the physiology and the neurochemistry of your body and can tell us why you have pain, and where we should go in and try to fix it.”

Some of the ways in, she says, are remarkably direct and mechanical – like Al-Kaisy’s spinal cord stimulation wire. “There are now devices you can attach to your head and allow you to manipulate bits of the brain. You can wear them like bathing caps. They’re portable, ethically allowed brain-simulation devices. They’re easy for patients to use and evidence is coming, in clinical trials, that they are good for strokes and rehabilitation. There’s a parallel with the games industry, where they’re making devices you can put on your head so kids can use thought to move balls around. The games industry is, for fun, driving this idea that when you use your brain, you generate electrical activities. They’re developing the technology really fast, and we can use it in medical applications.”

§

According to the International Association for the Study of Pain, pain is defined as “an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage”. It’s a broad-brush definition that hints at the holistic nature of pain and the range of factors that might influence our perception of it. If not all of its causes are directly physical, standardised drug treatments will always be something of a blunt instrument.

Researchers at the Human Pain Research Laboratory at Stanford University, California, are working to gain a better understanding of individual responses to pain so that treatments can be more targeted. The centre was created in 1995 by the pleasingly named Dr Martin Angst of the Department of Anesthesiology. Its first investigations were into finding reliable methods of quantifying pain. Then Angst (assisted by the equally pleasingly named Dr Martha Tingle) looked into questions of opiate pharmacology, such as how easily the body builds up toleration to drugs.

Pain has become a huge area of medical research in the USA, for a simple reason.  Chronic pain affects over 100 million Americans and costs the country over half a trillion dollars a year in lost working hours, which is why it’s become a magnet for funding by big business and government.

The laboratory has several study initiatives on the go – into migraine, fibromyalgia, facial pain and other conditions – but its largest is into back pain. It has been endowed with a $10m grant from the National Institutes of Health to study non-drug alternative treatments for lower back pain. The specific treatments are mindfulness, acupuncture, cognitive behavioural therapy and real-time neural feedback. This may seem a very Californian range of pursuits, but the lab takes them very seriously and is enlisting an army of patients to build up a massive database.

They plan to inspect the pain tolerance of 400 people over five years of study, ranging from pain-free volunteers to the most wretched chronic sufferers who have been to other specialists but found no relief. Subjects are all called in, given screening tests (to exclude those with abnormal drug regimens or excessive ‘suicidality’) then subjected to several quantitative sensory tests: participants are asked to immerse one naked foot in a bucket of iced water until they feel pain; then one arm is subjected to a ‘contact heat evoked potential simulator’, which gradually heats up small-diameter nerve fibres until the patient feels pain; then they have ‘pressure needles’ poked onto their skin without breaking it until they report discomfort.

In all three cases, the idea is to find people’s mid-range tolerance (they’re asked to rate their pain while they’re experiencing it), to establish a usable baseline. They then are given the non-invasive treatments – mindfulness, acupuncture, etc – and are subjected afterwards to the same pain stimuli, to see how their pain tolerance has changed from their baseline reading. MRI scanning is used on the patients in both laboratory sessions, so that clinicians can see and draw inferences from the visible differences in blood flow to different parts of the brain.

A remarkable feature of the assessment process is that patients are also given scores for psychological states: a scale measures their level of depression, anxiety, anger, physical functioning, pain behaviour and how much pain interferes with their lives. This should allow physicians to use the information to target specific treatments. All these findings are stored in an ‘informatics platform’ called CHOIR, which stands for the Collaborative Health Outcomes Information Registry. It has files on 15,000 patients, 54,000 unique clinic visits and 40,000 follow-up meetings.

The big chief at the Human Pain Research Laboratory is Dr Sean Mackey, Redlich Professor of Anesthesiology, Perioperative and Pain Medicine, Neurosciences and Neurology at Stanford. His background is in bioengineering, and under his governance the Stanford Pain Management Center has twice been designated a centre of excellence by the American Pain Society. A tall, genial, easy-going man, he is sometimes approached by legal firms who want him to appear in court to state definitively whether their client is or isn’t in chronic pain (and therefore justified in claiming absentee benefit). His response is surprising.

“In 2008, I was asked by a law firm to speak in an industrial injury case in Arizona. This poor guy got hot burning asphalt sprayed on his arm at work; he had a claim of burning neuropathic pain. The plaintiff’s side brought in a cognitive scientist, who scanned his brain and said there was conclusive evidence that he had chronic pain. The defence asked me to comment, and I said, ‘That’s hogwash, we cannot use this technology for that purpose.’

“Shortly afterwards, I gave a talk on pain, neuroimaging and the law, explaining why you can’t do this – because there’s too much individual variability in pain, and the technology isn’t sensor-specific enough. But I concluded by saying, ‘If you were to do this, you’d use modern machine-learning approaches, like those used for satellite reconnaissance to determine whether a satellite is seeing a tank or a civilian truck.’ Some of my students said, ‘Can you give us some money to try this?’ I said, ‘Yes, but it can’t be done.’ But they designed the experiment – and discovered that, using brain imagery, they could predict with 80 per cent accuracy whether someone was feeling heat pain or not.”

Mackey finally published a paper about the experiment. So did his findings influence any court decisions? “No. I get asked by attorneys, and I always say, ‘There is no place for this in the courtroom in 2016 and there won’t be in 2020. People want to push us into saying this is an objective biomarker for detecting that someone’s in pain. But the research is in carefully controlled laboratory conditions. You cannot generalise about the population as a whole. I told the attorneys, ‘This is too much of a leap.’ I don’t think there’s a lot of clinical utility in having a pain-o-meter in a court or in most clinical situations.”

Mackey explains the latest thinking about what pain actually is. “Now we understand that pain is a balance between ascending information coming from our bodies and descending inhibitory systems from our brains. We call the ascending information ‘nociception’ – from the Latin nocere, to harm or hurt – meaning the response of the sensory nervous system to potentially harmful stimuli coming from our periphery, sending signals to the spinal cord and hitting the brain with the perception of pain. The descending systems are inhibitory, or filtering, neurons, which exist to filter out information that’s not important, to ‘turn down’ the ascending signals of hurt. The main purpose of pain is to be the great motivator, to tell you to pay attention, to focus. When Martin was doing the pain lab, we had no way of addressing these two dynamic systems, and now we can.”

Mackey is immensely proud of his massive CHOIR database – which records people’s pain tolerance levels and how they are affected by treatment – and has made it freely available to other pain clinics as a ‘community source platform’, collaborating with academic medical centres nationwide “so that a rising tide elevates all boats”. But he’s also humble enough to admit that science can’t tell us which are the sites of the body’s worst pains.

“Back pain is the most reported pain at 28 per cent, but I know there’s a higher density of nerve fibres in the hands, face, genitals and feet than in other areas. And there are conditions where the sufferer has committed suicide to get away from the pain: things like post-herpetic neuralgia, that burning nerve pain that occurs after an outbreak of shingles and is horrific; another is cluster headaches – some patients have thought about taking a drill to their heads to make it stop.”

Like Irene Tracey, he’s enthusiastic about the rise of transcranial magnetic stimulation (“Imagine hooking a nine-volt battery across your scalp”) but, when asked about his particular successes, he talks about simple solutions. “Early on in my career, I used to be very focused on the peripheral, the apparent site of the pain. I was doing interventions, and some people would get better but a lot wouldn’t. So I started listening to their fears and anxieties and working on those, and became very brain-focused. I noticed that if you have a nerve trapped in your knee, your whole leg could be on fire, but if you apply a local anaesthetic there, it could abolish it.

“This young woman came to me with a terrible burning sensation in her hand. It was always swollen; she couldn’t stand anyone touching it because it felt like a blowtorch.” Mackey noticed that she had a post-operative scar from prior surgery for carpal tunnel syndrome. Speculating that this was at the root of her problem, he injected Botox, a muscle relaxant, at the site of the scar. “A week later, she came up and gave me this huge hug and said, ‘I was able to pick up my child for the first time in two years. I haven’t been able to since she was born.’ All the swelling was gone. It taught me that it’s not all about the body part, and not all about the brain. It’s about both.” How counterintuitive to discover that, after centuries of curing pain with opiates, the mind can give the morphine a run for its money.

One night in May, my wife sat up in bed and said, “I’ve got this awful pain just here.” She prodded her abdomen and made a face. “It feels like something’s really wrong.” Woozily noting that it was 2am, I asked what kind of pain it was. “Like something’s biting into me and won’t stop,” she said.

“Hold on,” I said blearily, “help is at hand.” I brought her a couple of ibuprofen with some water, which she downed, clutching my hand and waiting for the ache to subside.

An hour later, she was sitting up in bed again, in real distress. “It’s worse now,” she said, “really nasty. Can you phone the doctor?” Miraculously, the family doctor answered the phone at 3am, listened to her recital of symptoms and concluded, “It might be your appendix. Have you had yours taken out?” No, she hadn’t. “It could be appendicitis,” he surmised, “but if it was dangerous you’d be in much worse pain than you’re in. Go to the hospital in the morning, but for now, take some paracetamol and try to sleep.”

Barely half an hour later, the balloon went up. She was awakened for the third time, but now with a pain so savage and uncontainable it made her howl like a tortured witch face down on a bonfire. The time for murmured assurances and spousal procrastination was over. I rang a local minicab, struggled into my clothes, bundled her into a dressing gown, and we sped to St Mary’s Paddington at just before 4am.

The flurry of action made the pain subside, if only through distraction, and we sat for hours while doctors brought forms to be filled, took her blood pressure and ran tests. A registrar poked a needle into my wife’s wrist and said, “Does that hurt? Does that? How about that?” before concluding: “Impressive. You have a very high pain threshold.”

The pain was from pancreatitis, brought on by rogue gallstones that had escaped from her gall bladder and made their way, like fleeing convicts, to a refuge in her pancreas, causing agony. She was given a course of antibiotics and, a month later, had an operation to remove her gall bladder.

“It’s keyhole surgery,” said the surgeon breezily, “so you’ll be back to normal very soon. Some people feel well enough to take the bus home after the operation.” His optimism was misplaced. My lovely wife, she of the admirably high pain threshold, had to stay overnight, and came home the following day filled with painkillers; when they wore off, she writhed with suffering. After three days she rang the specialist, only to be told: “It’s not the operation that’s causing discomfort – it’s the air that was pumped inside you to separate the organs before surgery.” Like all too many surgeons, they had lost interest in the fallout once the operation had proved a success.

During that period of convalescence, as I watched her grimace and clench her teeth and let slip little cries of anguish until a long regimen of combined ibuprofen and codeine finally conquered the pain, several questions came into my head. Chief among them was: Can anyone in the medical profession talk about pain with any authority? From the family doctor to the surgeon, their remarks and suggestions seemed tentative, generalised, unknowing – and potentially dangerous: Was it right for the doctor to tell my wife that her level of pain didn’t sound like appendicitis when the doctor didn’t know whether she had a high or low pain threshold? Should he have advised her to stay in bed and risk her appendix exploding into peritonitis? How could surgeons predict that patients would feel only ‘discomfort’ after such an operation when she felt agony – an agony that was aggravated by fear that the operation had been a failure?

I also wondered if there were any agreed words that would help a doctor understand the pain felt by a patient. I thought of my father, a GP in the 1960s with an NHS practice in south London, who used to marvel at the colourful pain symptoms he heard: “It’s like I’ve been attacked with a stapler”; “like having rabbits running up and down my spine”; “it’s like someone’s opened a cocktail umbrella in my penis...” Few of them, he told me, corresponded to the symptoms listed in a medical textbook. So how should he proceed? By guesswork and aspirin?

There seemed to be a chasm of understanding in human discussions of pain. I wanted to find out how the medical profession apprehends pain – the language it uses for something that’s invisible to the naked eye, that can’t be measured except by asking for the sufferer’s subjective description, and that can be treated only by the use of opium derivatives that go back to the Middle Ages.

§

When investigating pain, the basic procedure for clinics everywhere is to give a patient the McGill Pain Questionnaire. This was developed in the 1970s by two scientists, Dr Ronald Melzack and Dr Warren Torgerson, both of McGill University in Montreal, and is still the main tool for measuring pain in clinics worldwide.

Melzack and his colleague Dr Patrick Wall of St Thomas’ Hospital in London had already galvanised the field of pain research in 1965 with their seminal ‘gate control theory’, a ground-breaking explanation of how psychology can affect the body’s perception of pain. In 1984 the pair went on to write Wall and Melzack’s Textbook of Pain, the most comprehensive reference work in pain medicine. It’s gone through five editions and is currently over 1,000 pages long.

In the early 1970s, Melzack began to list the words patients used to describe their pain and classified them into three categories: sensory (which included heat, pressure, ‘throbbing’ or ‘pounding’ sensations), affective (which related to emotional effects, such as ‘tiring’, ‘sickening’, ‘gruelling’ or ‘frightful’) and lastly evaluative (evocative of an experience – from ‘annoying’ and ‘troublesome’ to ‘horrible’, ‘unbearable’ and ‘excruciating’).

You don’t have to be a linguistic genius to see there are shortcomings in this lexical smorgasbord. For one thing, some words in the affective and evaluative categories seem interchangeable – there’s no difference between ‘frightful’ in the former and ‘horrible’ in the latter, or between ‘tiring’ and ‘annoying’ – and all the words share an unfortunate quality of sounding like a duchess complaining about a ball that didn’t meet her standards.

But Melzack’s grid of suffering formed the basis of what became the McGill Pain Questionnaire. The patient listens as a list of ‘pain descriptors’ is read out and has to say whether each word describes their pain – and, if so, to rate the intensity of the feeling. The clinicians then look at the questionnaire and put check marks in the appropriate places. This gives them a number, or a percentage figure, to work with in assessing, later, whether a treatment has brought the patient’s pain down (or up).

A more recent variant is the National Initiative on Pain Control’s Pain Quality Assessment Scale (PQAS), in which patients are asked to indicate, on a scale of 1 to 10, how “intense” – or “sharp”, “hot”, “dull”, “cold”, “sensitive”, “tender”, “itchy”, etc – their pain has been over the past week.

The trouble with this approach is the imprecision of that scale of 1 to 10, where a 10 would be “the most intense pain sensation imaginable”. How does a patient ‘imagine’ the worst pain ever and give their own pain a number? Middle-class British men who have never been in a war zone may find it hard to imagine anything more agonising than toothache or a tennis injury. Women who have experienced childbirth may, after that experience, rate everything else as a mild 3 or 4.

I asked some friends what they thought the worst physical pain might be. Inevitably, they just described nasty things that had happened to them. One man nominated gout. He recalled lying on a sofa, with his gouty foot resting on a pillow, when a visiting aunt passed by; the chiffon scarf she was wearing slipped from her neck and lightly touched his foot. It was “unbearable agony”. A brother-in-law nominated post-root canal toothache – unlike muscular or back pain, he said, it couldn’t be alleviated by shifting your posture. It was “relentless”. A male friend confided that a haemorrhoidectomy had left him with irritable bowel syndrome, in which a daily spasm made him feel “as if somebody had shoved a stirrup pump up my arse and was pumping furiously”. The pain was, he said, “boundless, as if it wouldn’t stop until I exploded”. A woman friend recalled the moment the hem of her husband’s trouser leg snagged on her big toe, ripping the nail clean off. She used a musical analogy to explain the effect: “I’d been through childbirth, I’d broken my leg – and I recalled them both as low moaning noises, like cellos; the ripped-off nail was excruciating, a great, high, deafening shriek of psychopathic violins, like nothing I’d heard – or felt – before.”

A novelist friend who specialises in World War I drew my attention to Stuart Cloete’s memoir A Victorian Son (1972), in which the author records his time in a field hospital. He marvels at the stoicism of the wounded soldiers: “I have heard boys on their stretchers crying with weakness, but all they ever asked for was water or a cigarette. The exception was a man hit through the palm of the hand. This I believe to be the most painful wound there is, as the sinews of the arm contract, tearing as if on a rack.”

Is it true? Looking at the Crucifixion scene in Matthias Grünewald’s Isenheim Altarpiece (1512–16), you take in the horribly straining fingers of Christ, twisted around the fat nailheads that skewer his hands to the wood – and oh, God yes, you believe it must be true.

It seems a shame that these eloquent descriptions are reduced by the McGill Questionnaire to words like ‘throbbing’ or ‘sharp’, but its function is simply to give pain a number – a number that will, with luck, be decreased after treatment, when the patient is reassessed.

This procedure doesn’t impress Professor Stephen McMahon of the London Pain Consortium, an organisation formed in 2002 to promote internationally competitive research into pain. “There are lots of problems that come with trying to measure pain,” he says. “I think the obsession with numbers is an oversimplification. Pain is not unidimensional. It doesn’t just come with scale – a lot or a little – it comes with other baggage: how threatening it is, how emotionally disturbing, how it affects your ability to concentrate. The measuring obsession probably comes from the regulators who think that, to understand drugs, you have to show efficacy. And the American Food and Drug Administration don’t like quality-of-life assessments; they like hard numbers. So we’re thrown back on giving it a number and scoring it. It’s a bit of a wasted exercise because it’s only one dimension of pain that we’re capturing."

§

Extra

Can love really conquer pain?

Experiments on newly infatuated people show that passion could be a natural painkiller.

Pain can be either acute or chronic, and the words do not (as some people think) mean ‘bad’ and ‘very bad’. ‘Acute’ pain means a temporary or one-off feeling of discomfort, which is usually treated with drugs; ‘chronic’ pain persists over time and has to be lived with as a malevolent everyday companion. But because patients build up a resistance to drugs, other forms of treatment must be found for it.

The Pain Management and Neuromodulation Centre at Guy’s and St Thomas’ Hospital in central London is the biggest pain centre in Europe. Heading the team there is Dr Adnan Al-Kaisy, who studied medicine at the University of Basrah, Iraq, and later worked in anaesthetics at specialist centres in England, the USA and Canada.

Who are his patients and what kind of pain are they generally suffering from? “I’d say that 55 to 60 per cent of our patients suffer from lower back pain,” he says. “The reason is, simply, that we don’t pay attention to the demands life makes on us, the way we sit, stand, walk and so on. We sit for hours in front of a computer, with the body putting heavy pressure on small joints in the back.” Al-Kaisy reckons that in the UK the incidence of chronic lower back pain has increased substantially in the last 15–20 years, and that “the cost in lost working days is about £6–7 billion”.

Elsewhere the clinic treats those suffering from severe chronic headaches and injuries from accidents that affect the nervous system.

Do they still use the McGill Questionnaire? “Unfortunately yes,” says Al-Kaisy. “It’s a subjective measurement. But pain can be magnified by a domestic argument or trouble at work, so we try to find out about the patient’s life – their sleeping patterns, their ability to walk and stand, their appetite. It’s not just the patient’s condition, it’s also their environment.”

The challenge is to transform this information into scientific data. “We’re working with Professor Raymond Lee, Chair of Biomechanics at the South Bank University, to see if there can be objective measurement of a patient’s disability due to pain,” he says. “They’re trying to develop a tool, rather like an accelerometer, which will give an accurate impression of how active or disabled they are, and tell us the cause of their pain from the way they sit or stand. We’re really keen to get away from just asking the patient how bad their pain is.”

Some patients arrive with pains that are far worse than backache and require special treatment. Al-Kaisy describes one patient – let us call him Carter – who suffered from a terrible condition called ilioinguinal neuralgia, a disorder that produces a severe burning and stabbing pain in the groin. “He’d had an operation in the testicular area, and the inguinal nerve had been cut. The pain was excruciating: when he came to us, he was on four or five different medications, opiates with very high dosages, anticonvulsive medication, opioid patches, paracetamol and ibuprofen on top of that. His life was turned upside down, his job was on the line.” The utterly stricken Carter was to become one of Al-Kaisy’s big successes.

Since 2010, Guy’s and St Thomas’ has offered a residential programme for adults whose chronic pain hasn’t responded to treatment at other clinics. The patients come in for four weeks, away from their normal environment, and are seen by a motley crew of psychologists, physiotherapists, occupational health specialists and nursing physicians who between them devise a programme to teach them strategies for managing their pain.

© Matthew Richardson at Heart

Many of these strategies come under the heading of ‘neuromodulation’, a term you hear everywhere in pain management circles. In simple terms, it means distracting the brain from constantly brooding on the pain signals it’s getting from the body’s ‘periphery’. Sometimes the distraction is a cunningly deployed electric shock.

“We were the first centre in the world to pioneer spinal cord stimulation,” says Al-Kaisy proudly. “In pain occasions, overactive nerves send impulses from the periphery to the spinal cord and from there to the brain, which starts to register pain. We try to send small bolts of electricity to the spinal cord by inserting a wire in the epidural area. It’s only one or two volts, so the patient feels just a tingling sensation over where the pain is, instead of feeling the actual pain. After two weeks, we give the patient an internal power battery with a remote control, so he can switch it on whenever he feels pain and carry on with his life. It’s essentially a pacemaker that suppresses the hyperexcitability of nerves by delivering subthreshold stimulation. The patient feels nothing except his pain going down. It’s not invasive – we usually send patients home the same day.”

When Carter, the chap with the agonised groin, had failed to respond to any other treatments, Al-Kaisy tried his box of tricks. “We gave him something called a dorsal root ganglion stimulation. It’s like a small junction-box, placed just underneath one of the bones of the spine. It makes the spine hyperexcited, and sends impulses to the spinal cord and the brain. I pioneered a new technique to put a small wire into the ganglion, connected to an external power battery. Over ten days the intensity of pain went down by 70 per cent – by the patient’s own assessment. He wrote me a very nice email saying I had changed his life, that the pain had just stopped completely, and that he was coming back to normality. He said his job was saved, as was his marriage, and he wanted to go back to playing sport. I told him, ‘Take it easy. You mustn’t start climbing the Himalayas just yet.’” Al-Kaisy beams. “This is a remarkable outcome. You cannot get it from any other therapies.”

§

The greatest recent breakthrough in assessing pain, according to Professor Irene Tracey, head of the University of Oxford’s Nuffield Department of Clinical Neurosciences, has been the understanding that chronic pain is a thing in its own right. She explains: “We always thought of it as acute pain that just goes on and on – and if chronic pain is just a continuation of acute pain, let’s fix the thing that caused the acute and the chronic should go away. That has spectacularly failed. Now we think of chronic pain as a shift to another place, with different mechanisms, such as changes in genetic expression, chemical release, neurophysiology and wiring. We’ve got all these completely new ways of thinking about chronic pain. That’s the paradigm shift in the pain field.”

Tracey has been called the ‘Queen of Pain’ by some media commentators. She was, until recently, the Nuffield Professor of Anaesthetic Science and is an expert in neuroimaging techniques that explore the brain’s responses to pain. Despite her nickname, in person she is far from alarming: a bright-eyed, enthusiastic, welcoming and hectically fluent woman of 50, she talks about pain at a personal level. She has no problem defining the “ultimate pain” that scores 10 on the McGill Questionnaire: “I’ve been through childbirth three times, and my 10 is a very different 10 from before I had kids. I’ve got a whole new calibration on that scale.” But how does she explain the ultimate pain to people who haven’t experienced childbirth? “I say, ‘Imagine you’ve slammed your hand in a car door – that’s 10.’”

She uses a personal example to explain the way perception and circumstance can alter the way we experience pain, as well as the phenomenon of ‘hedonic flipping’, which can convert pain from an unpleasant sensation into something you don’t mind. “I did the London Marathon this year. It needs a lot of training and running and your muscles ache, and next day you’re really in pain, but it’s a nice pain. I’m no masochist, but I associate the muscle pain with thoughts like, ‘I did something healthy with my body,’ ‘I’m training,’ and ‘It’s all going well.’”

I ask her why there seems to be a gap between doctors’ and patients’ apprehension of pain. “It’s very hard to understand, because the system goes wrong from the point of injury, along the nerve that’s taken the signal into the spinal cord, which sends signals to the brain, which sends signals back, and it all unravels with terrible consequential changes. So my patient may be saying, ‘I’ve got this excruciating pain here,’ and I’m trying to see where it’s coming from, and there’s a mismatch here because you can’t see any damage or any oozing blood. So we say, ‘Oh come now, you’re obviously exaggerating, it can’t be as bad as that.’ That’s wrong – it’s a cultural bias we grew up with, without realising.” 

Recently, she says, there has been an explosion of understanding about how the brain is involved in pain. Neuroimaging, she explains, helps to connect the subjective pain with the objective perception of it. “It fills that space between what you can see and what’s being reported. We can plug that gap and explain why the patient is in pain even though you can’t see it on your X-ray or whatever. You’re helping to bring truth and validity to these poor people who are in pain but not believed.”

© Matthew Richardson at Heart

But you can’t simply ‘see’ pain glowing and throbbing on the screen in front of you. “Brain imaging has taught us about the networks of the brain and how they work,” she says. “It’s not a pain-measuring device. It’s a tool that gives you fantastic insight into the anatomy, the physiology and the neurochemistry of your body and can tell us why you have pain, and where we should go in and try to fix it.”

Some of the ways in, she says, are remarkably direct and mechanical – like Al-Kaisy’s spinal cord stimulation wire. “There are now devices you can attach to your head and allow you to manipulate bits of the brain. You can wear them like bathing caps. They’re portable, ethically allowed brain-simulation devices. They’re easy for patients to use and evidence is coming, in clinical trials, that they are good for strokes and rehabilitation. There’s a parallel with the games industry, where they’re making devices you can put on your head so kids can use thought to move balls around. The games industry is, for fun, driving this idea that when you use your brain, you generate electrical activities. They’re developing the technology really fast, and we can use it in medical applications.”

§

According to the International Association for the Study of Pain, pain is defined as “an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage”. It’s a broad-brush definition that hints at the holistic nature of pain and the range of factors that might influence our perception of it. If not all of its causes are directly physical, standardised drug treatments will always be something of a blunt instrument.

Researchers at the Human Pain Research Laboratory at Stanford University, California, are working to gain a better understanding of individual responses to pain so that treatments can be more targeted. The centre was created in 1995 by the pleasingly named Dr Martin Angst of the Department of Anesthesiology. Its first investigations were into finding reliable methods of quantifying pain. Then Angst (assisted by the equally pleasingly named Dr Martha Tingle) looked into questions of opiate pharmacology, such as how easily the body builds up toleration to drugs.

Pain has become a huge area of medical research in the USA, for a simple reason.  Chronic pain affects over 100 million Americans and costs the country over half a trillion dollars a year in lost working hours, which is why it’s become a magnet for funding by big business and government.

The laboratory has several study initiatives on the go – into migraine, fibromyalgia, facial pain and other conditions – but its largest is into back pain. It has been endowed with a $10m grant from the National Institutes of Health to study non-drug alternative treatments for lower back pain. The specific treatments are mindfulness, acupuncture, cognitive behavioural therapy and real-time neural feedback. This may seem a very Californian range of pursuits, but the lab takes them very seriously and is enlisting an army of patients to build up a massive database.

They plan to inspect the pain tolerance of 400 people over five years of study, ranging from pain-free volunteers to the most wretched chronic sufferers who have been to other specialists but found no relief. Subjects are all called in, given screening tests (to exclude those with abnormal drug regimens or excessive ‘suicidality’) then subjected to several quantitative sensory tests: participants are asked to immerse one naked foot in a bucket of iced water until they feel pain; then one arm is subjected to a ‘contact heat evoked potential simulator’, which gradually heats up small-diameter nerve fibres until the patient feels pain; then they have ‘pressure needles’ poked onto their skin without breaking it until they report discomfort.

In all three cases, the idea is to find people’s mid-range tolerance (they’re asked to rate their pain while they’re experiencing it), to establish a usable baseline. They then are given the non-invasive treatments – mindfulness, acupuncture, etc – and are subjected afterwards to the same pain stimuli, to see how their pain tolerance has changed from their baseline reading. MRI scanning is used on the patients in both laboratory sessions, so that clinicians can see and draw inferences from the visible differences in blood flow to different parts of the brain.

A remarkable feature of the assessment process is that patients are also given scores for psychological states: a scale measures their level of depression, anxiety, anger, physical functioning, pain behaviour and how much pain interferes with their lives. This should allow physicians to use the information to target specific treatments. All these findings are stored in an ‘informatics platform’ called CHOIR, which stands for the Collaborative Health Outcomes Information Registry. It has files on 15,000 patients, 54,000 unique clinic visits and 40,000 follow-up meetings.

The big chief at the Human Pain Research Laboratory is Dr Sean Mackey, Redlich Professor of Anesthesiology, Perioperative and Pain Medicine, Neurosciences and Neurology at Stanford. His background is in bioengineering, and under his governance the Stanford Pain Management Center has twice been designated a centre of excellence by the American Pain Society. A tall, genial, easy-going man, he is sometimes approached by legal firms who want him to appear in court to state definitively whether their client is or isn’t in chronic pain (and therefore justified in claiming absentee benefit). His response is surprising.

“In 2008, I was asked by a law firm to speak in an industrial injury case in Arizona. This poor guy got hot burning asphalt sprayed on his arm at work; he had a claim of burning neuropathic pain. The plaintiff’s side brought in a cognitive scientist, who scanned his brain and said there was conclusive evidence that he had chronic pain. The defence asked me to comment, and I said, ‘That’s hogwash, we cannot use this technology for that purpose.’

“Shortly afterwards, I gave a talk on pain, neuroimaging and the law, explaining why you can’t do this – because there’s too much individual variability in pain, and the technology isn’t sensor-specific enough. But I concluded by saying, ‘If you were to do this, you’d use modern machine-learning approaches, like those used for satellite reconnaissance to determine whether a satellite is seeing a tank or a civilian truck.’ Some of my students said, ‘Can you give us some money to try this?’ I said, ‘Yes, but it can’t be done.’ But they designed the experiment – and discovered that, using brain imagery, they could predict with 80 per cent accuracy whether someone was feeling heat pain or not.”

Mackey finally published a paper about the experiment. So did his findings influence any court decisions? “No. I get asked by attorneys, and I always say, ‘There is no place for this in the courtroom in 2016 and there won’t be in 2020. People want to push us into saying this is an objective biomarker for detecting that someone’s in pain. But the research is in carefully controlled laboratory conditions. You cannot generalise about the population as a whole. I told the attorneys, ‘This is too much of a leap.’ I don’t think there’s a lot of clinical utility in having a pain-o-meter in a court or in most clinical situations.”

Mackey explains the latest thinking about what pain actually is. “Now we understand that pain is a balance between ascending information coming from our bodies and descending inhibitory systems from our brains. We call the ascending information ‘nociception’ – from the Latin nocere, to harm or hurt – meaning the response of the sensory nervous system to potentially harmful stimuli coming from our periphery, sending signals to the spinal cord and hitting the brain with the perception of pain. The descending systems are inhibitory, or filtering, neurons, which exist to filter out information that’s not important, to ‘turn down’ the ascending signals of hurt. The main purpose of pain is to be the great motivator, to tell you to pay attention, to focus. When Martin was doing the pain lab, we had no way of addressing these two dynamic systems, and now we can.”

Mackey is immensely proud of his massive CHOIR database – which records people’s pain tolerance levels and how they are affected by treatment – and has made it freely available to other pain clinics as a ‘community source platform’, collaborating with academic medical centres nationwide “so that a rising tide elevates all boats”. But he’s also humble enough to admit that science can’t tell us which are the sites of the body’s worst pains.

“Back pain is the most reported pain at 28 per cent, but I know there’s a higher density of nerve fibres in the hands, face, genitals and feet than in other areas. And there are conditions where the sufferer has committed suicide to get away from the pain: things like post-herpetic neuralgia, that burning nerve pain that occurs after an outbreak of shingles and is horrific; another is cluster headaches – some patients have thought about taking a drill to their heads to make it stop.”

Like Irene Tracey, he’s enthusiastic about the rise of transcranial magnetic stimulation (“Imagine hooking a nine-volt battery across your scalp”) but, when asked about his particular successes, he talks about simple solutions. “Early on in my career, I used to be very focused on the peripheral, the apparent site of the pain. I was doing interventions, and some people would get better but a lot wouldn’t. So I started listening to their fears and anxieties and working on those, and became very brain-focused. I noticed that if you have a nerve trapped in your knee, your whole leg could be on fire, but if you apply a local anaesthetic there, it could abolish it.

“This young woman came to me with a terrible burning sensation in her hand. It was always swollen; she couldn’t stand anyone touching it because it felt like a blowtorch.” Mackey noticed that she had a post-operative scar from prior surgery for carpal tunnel syndrome. Speculating that this was at the root of her problem, he injected Botox, a muscle relaxant, at the site of the scar. “A week later, she came up and gave me this huge hug and said, ‘I was able to pick up my child for the first time in two years. I haven’t been able to since she was born.’ All the swelling was gone. It taught me that it’s not all about the body part, and not all about the brain. It’s about both.” How counterintuitive to discover that, after centuries of curing pain with opiates, the mind can give the morphine a run for its money.

This article first appeared on Mosaic and is republished here under a Creative Commons licence.

Posted on

In Praise of Folders

unknownSlack is a big name in the social learning space. The collaboration tool has grown dramatically with over 4m daily users currently, and it is only just over two years old! Some Slack statistics are here

Some of Slack’s users are wildly enthusiastic about the tool. Just look at this post: . Pluralsight has replaced its internal email with Slack, so it is pretty important to that global, tech company! And they love it too.

What is the source of this wild enthusiasm? A lot of it, is a reflection of people’s disillusionment with email. Email is a nightmare of disordered, random information to the point where it has been described as the place where ideas go to die! (see, here: https://ideascale.com/where-good-ideas-go-to-die/ ) for example)

Slack’s beauty is that it keeps, in one place, all the documents and communications from a single project. These are all clustered into one channel and differentiated, largely, by tagging. There is a defined cohort of users for a particular channel, and so you can see how small groups can communicate much more effectively using Slack than sharing the same information via email.  Gone for ever are the ‘ccs’ and worse the ‘bccs’. It is far more open and transparent.

In addition, it is possible to have multiple channels with different people registered for each channel. So, if you are working on four projects, for example, you have four Slack channels each of which is completely separate from the other three. When you open Slack instead of the chaos of email, you have nice discrete places where each significant project has its information stored, that is accessible by the people who belong to the project. What is not to like?

When you dig deeper, there are some obvious limitations to Slack as well. Everything is posted in date order apart from specific communications or responses to a message or document. Once the project starts to grow in size and volume, the long line of documents and information snakes backwards in time to that first post. If everything has been well tagged you can find those documents or comments easily. If the tagging is slightly erratic or ‘slack’ then there is a huge pile of inaccessible data not unlike email. A lot of trawling is required and you can miss stuff.

So Slack requires discipline and management. Someone must keep a close eye on the channel and tend it, and tag it, and generally maintain its usefulness. If you fail to do that it becomes a tad confusing and chaotic. And at some point, it turns from a garden to a pile of weeds: it can break down as a comms tool.

Call me old fashioned but I like folders!! If you have a tree structure you can see at a glance where everything has been placed and the tree grows as the project expands, but it maintains a coherent structure. Everything is accessible, everything is clear and neat, and for lots of people that is a prerequisite for good project management and peace of mind. If you can also communicate with group members straight out of the App then that adds massively to the functionality.

Have a look at Noddlepod  as an alternative way of ordering your world. In a time-poor, information-heavy world where we inevitably live and work, you may well like its alternative approach to managing large amounts of pretty random information and communications.  It allows us to visually filter out what we don’t need.  As tech expert and professor at NYU Clay Shirky made an important speech claiming the problem was: ‘..not information overload, it’s filter failure’. Having the technology to filter out the unnecessary, makes relevant immediately and obviously more accessible. And the filter is the nest of folders. When you open Noddlepod you see the folder structure; not the pile of documents they contain. Life becomes instantly more manageable. And there is search to back it up.

That’s what social learning platforms should do as well – help people get to the information they want and need, as quickly, easily and effectively as possible. That is certainly what Noddlepod aims to do. You can tap into what you need to know, when you need to know it.

Context is so important in social learning, yet Slack can be context poor below the channel level. In our world, once any piece of information is out there, it is soon lost online or on your hard drive, and frustratingly difficult to find quickly. Even if it can be found, then it is hard to find the context. And context is important! Slack helps; and much more beside but check out other tools too.

I love clarity, and simplicity of access and simple storage. Check it out: www.noddlepod.com

Posted on

Why Do We Need Learning Professionals?

I think I have a few answers to that question.  Read the blog post  here and come along to WOLCE to hear me speak next Wednesday pm.  We should be asking that question and answering it!!

Posted on

From Scratch

Martin Couzins and I have been doing weekly podcasts for a few months using AudioBoom. We decided to put the whole lot onto a custom designed website and make it easier for discovery, archive access and promotion.

So click here or note http://fromscratchpodcast.com.  Please enjoy. Please comment.from-scratch-logo  We had a bit of a break whilst we set up the site but we are back with a post on Gettysburg!  Leadership Under DuressAnd regularly from this point onwards..

Posted on

Rachel Salaman Interviewed Me on the Mind Tools Website

I was interviewed a while ago by Rachel and it was published recently on the Mind Tools site.

Please listen by clicking here,  and let me know what you think.

Posted on

Putting 70:20:10 To Work

A conversation with Charles Jennings at Learning Technologies 15. January 29th

 

Check out “The Learning Challenge” 20% Discount from
http://www.koganpage,com  TLCAD20 
Free P&P in the UK
lowRes
Have you seen http://www.learningnow.tv  Free monthly TV show that is streamed and available to look at on demand after the programme goes out.
Posted on

The Challenge of Effective Workplace Learning

 

B8Y-illCIAAXOXU1

 

 

Check out “The Learning Challenge” 20% Discount from
http://www.koganpage,com  TLCAD20 
Free P&P in the UK
lowRes
Have you seen http://www.learningnow.tv  Free monthly TV show that is streamed and available to look at on demand after the programme goes out.

 

Posted on

Cross Posting by Matt MacInnes of Inkling.Com

Original Post is located here at Inkling

Liberating Learning Professionals from Old Technologies

  By Matt MacInnis on October 29, 2014

As the CEO of a learning technology company, I spend a lot of time with learning professionals at companies of all sizes. I’ve seen a renaissance in the L&D profession over the last few years as learning has become an important executive focus. But I’ve also noticed that the profession is hamstrung with old, frustrating technologies. Everyone wants a way out, but nobody knows how.

LEARNING TECHNOLOGY: LATE TO THE PARTY, BUT CATCHING UP FAST

Improvements in learning technology have been slow to come for a number of reasons. First among them is the complexity of the learning practice itself: it’s very content-centric, and software that’s used to create and manage content is complex, too. This category of software, by virtue of its complexity, is the last to move into the cloud. Luckily, the shift to mobileBYOD trends and shifting demographics in the workforce is forcing many learning professionals to rethink their use of technology.

When the migration of software into the cloud began in the 2000s, the simplest applications moved first, like Salesforce.com, which lets people manage basic databases of customer information using a web browser. The benefit to sales and marketing teams was massive. More sophisticated applications have followed suit, creating exciting new businesses: Netsuite for accounting and Workday for HR management, to name just two. Now, with the increasing power of web browsers and network connections, we’re finally able to move content-heavy applications into the cloud. That’s where it gets interesting for learning professionals.

WHY INCUMBENTS INNOVATE LAST

History shows that this innovation will not come from incumbent companies. Salesforce, Netsuite and Workday were all new, “cloud-first” companies, and many incumbents suffered for their success. In learning, we’ll see the same thing happen to the likes of Adobe, Articulate, and even LMS providers. While they’re commonly used today, it’s difficult for them to reinvent their business model, technology foundations, and product stories all at once.

For example, just open a new document in one of these older tools. What you get is a standard slide deck with some additional features specific to instructor-led training. Before the cloud, mobile devices, and the modern web, this kind of “slideware” was sufficient for classroom settings and PC-based instruction. Years of development have gone into building applications that optimize for the connected desktop environment. Because of this, slideware applications cannot be repurposed to naturally work with mobile devices, even if they try to incorporate responsive design features or export to HTML5. Sadly, by trying to be something they’re not, these older tools have become increasingly more cumbersome. Learning technologies need a fresh start.

WHEN A CLOUD ISN’T REALLY A CLOUD

It’s easiest to pick on the most popular solution: Adobe. In a rather cynical marketing ploy, they have slapped the word “cloud” onto their product names. It’s a misnomer. Their products are desktop applications that lack any of the most basic characteristics of cloud software. Here are three easy examples:

  1. Cloud applications allow everyone to see the same content at the same time, and collaborate on it simultaneously. Desktop applications require you to share files with one another and track versions manually.

  2. Cloud applications receive improvements every week, and you’re always automatically running the latest version. Desktop applications have to be downloaded and will “nag” you to update them; when your version is newer than someone else’s, collaboration becomes difficult or impossible.

  3. Cloud applications are always connected to end users, so they can provide up-to-the-minute data about usage, project statuses and the like. Desktop applications don’t provide real-time data about anything.

WITH NEW TECHNOLOGY, A STITCH IN TIME SAVES NINE

So what are the practical implications for learning professionals? The bets you place on technologies today will last for years, so it’s important to break the addiction to older technologies as soon as you can. Content has a shelf life that’s sometimes longer than the software itself, which makes it doubly important in the learning business. In general, it’s better to adopt up-and-coming technology and deal with some short-term feature gaps than to adopt old technology and miss the long-term opportunity.

Of course, choosing the right up-and-coming technology is critical to your success, too. Recently, I outlined five simple principles to guide your selection of vendors and technologies that will upgrade your learning, as well as some easy ways to ascertain if a proposed solution is following these rules. By following principles like these, you’ll be able to make future-proofed decisions that move away from the old toward a more engaging, exciting world of corporate learning.

New technologies advance at an incredible pace. At Inkling, we issue multiple updates to Inkling Habitat, our authoring environment, every week. These updates are driven by our customers, as we work together closely to define our product roadmap, ensuring that the most important gaps are filled first. It’s like that with any young, fast-moving software company. And it’s important to note that every young, fast-moving software company is building its products in the cloud. No one new is building desktop software any more. That’s a signal in itself.

Just as the cloud computing wave improved the work of sales, marketing, and finance, it will now begin to dramatically change the work of learning. The rate of change will be rapid, and the benefits will be broad. Early adopters will be rewarded with control over the direction of its development, and the freedom to innovate beyond today’s constraints, so focus your energy on taking appropriate risks. When learning professionals break the addiction to old technology, the renaissance in corporate learning will finally blossom.

Posted on

Context is Everything

Cross posting Inkling.Com

I was flying from Australia recently. I awoke in the darkened plane not realising whether I had been asleep for five hours or five minutes. It is a very disorientating. My solution to discover where I was and how long I had been asleep, was to turn on the electronic map to find out my location and, therefore, how long I had been asleep.

The map showed an aeroplane moving through a coloured background delicately shaded from light blue to dark blue to yellow to black. This was not helpful! What was missing was any sense of scale, any recognisable reference points or any context. I got my information shortly afterwards from other sources, but the hopeless image from the screen stayed with me for a long time.

It struck me that context is incredibly important in order to make meaning. Context helps us know why, know when, and know how. In a similar way to my own confusion, that sense of disorientation and frustration can occur in organisations when you are told what you should do, but not why or in what context it needs to be done.

Learning needs context, most of the time, to make sense. Learning needs context to help motivation and justify some development exercise. Learning needs context if you are attempting to motivate and empower as well as develop skills.

My colleague Matthew Bidwell from the University of Pennsylvania, Wharton Business School, developed a very simple little model to illustrate this. It is a triangle with empowerment, motivation, and skills in the three corners. I find that model incredibly useful. It is often pointless developing skills with out building motivation. It is pointless motivating with out empowering, and it is pointless empowering without the skills to deliver.

When you are considering building skills and competencies you should also be focusing on motivation and empowerment. This allows people who work in learning to have really powerful conversations with the operational side of the organisation and help build a valid context which can be shared and ratified.

These are much more complex conversations than simply: “give me a course!” and they are richer conversations because they share the responsibility for the successful implementation of learning. All too often we blame learning from not doing what it said it would. We blame the learner for not changing in the way we had hoped, and we blame the learning organisation for delivering less than it promised.

If you reflect on that triangle of: skills, empowerment and motivation, I am sure that you will have better conversations as well as deliver more effective learning.

Posted on

In Praise of the iPhone 3GS

I lost my iPhone 5 on a plane flying to Melbourne from Wellington. After the initial panic and the realisation that I could not get my new SIM card until I returned to London I started to calm down so I would be weeks without full functionality. I had to dig out my oldest iPhone that had not been touched for years. it was disinterred, charged up, and away it went with an Australian SIM card.

Apart from the embarrassment of being seen with an ancient phone, in reality it is not bad at all. I owned an iPhone 1 and loved it. It lasted for two years when I migrated to the 3GS, then a 4 then a 4S and finally a 5 and a 5C for my wife. I sold the iPhone 1 but all the others are in pretty regular use. London is home to the 5 and 5C, Australia home to the 4S and the 3GS. My daughter uses my iPhone 4 in New Zealand. That is pretty amazing that 5 generations of iPhone all work and do a pretty good job.

What I like about the 3GS.

IT sits nicely in the hand. And it is very light.

IT is reasonably fast running iOS 6 (it can’t run 7).

It can handle most things I need it to.

BUT the battery is weak, it does have a tendency to collapse and need to be rebooted.

And iOS 6 is not half as good as iOS 7. Going back to the old iOS really makes you realise the effort and transformation of iOS 7. But you can adjust back really quickly although there are some things that take a age to remember how you do something on iOS 6 that is now very straightforward on iOS 7.

But considering it is four years old, it will get me by until I get back to the UK and I can buy a new phone. IT is practically jurassic in phone terms yet it does lots of stuff really well. I never would have believed it. Does that mean that I am abandoning the upgrade at all costs nonsense? Of course not?? I will be back in the hunt for an iPhone 6 but the experience of stepping back 4 generations of phone has been way better than I expected. I have to admit that I quite like the soon to be retired beast!

Posted on

From Scratch #18

We are approaching our first 20 From Scratch podcasts. This one modestly talks about my book. Check ti out here.

Posted on

From Scratch 15

A review of John Seely Brown and Douglas Thomas: A New Culture of Learning by the intrepid duo of Nigel Paine and Martin Couzins.

Posted on

Personal Knowledge Mastery. From Scratch with Harold Jarche


It was a pleasure catching up with Harold in Sydney Australia. It is Autumn here, not summer as I claim in the interview. What was I thinking of! Just the excitement of talking to a world class expert in this field, and many more.

Posted on

From Scratch No 6: The Learner Voice

Posted on

The Learner Voice

Here is From Scratch #6. This time it is a conversation with Laura Overton from Towards Maturity and is a discussion about her recently released report called The Learner Voice: a survey with 2,000 learners about how they learn and what they learn.

Posted on

From Scratch No 5

Called strategies for reading. And you can listen here

Posted on

From Scratch No 3

This is our take on learning and organisations. Only 4 minutes to listen:

Posted on

From Scratch #2: Social Learning

Here is the second of the From Scratch Conversations with Martin Couzins. Just over 3 minutes on Social Learning. Mercifully short, and worth a listen (I hope).

Posted on

Snapshot Porn and Curation v Creation

I have just been wandering round some of the ancient monuments of Istanbul. Some of the most wonderful Bysantine and Ottoman architecture I have ever seen. And Hagia Sophia is the most impressive of them all. A stunning Greek Orthodox Basilica, then a magnificent Ottoman Mosque and finally a museum with its antecedents going back to the 3rd century. The mosaics of Christ and the Virgin Mary cheek by jowl with huge calligraphic tributes to the Prophet Mohamed. And the most stunning architecture. It is breath-taking and hard not to just stand still in astonishment.

Yet the hoards of tourists simply walk, stop, click, walk, click, click, click, walk. Everything they see is framed inside the camera viewfinder. No looking. No interpretation no framing. And yet the human eye is much more sophisticated than any lens. It sees in 3D and can make sense where a camera sees 2D blandness. Ten seconds to look beats 10 shots with an iPhone. But if you observe behaviour you would never think that.

And what happens to those photos; the out of focus, the too dark, the over flash lit? I bet they sit in a digital store along side the good or even the excellent shots. No discrimination and no learning. No processing from eye to brain, just eye to SD card.

No one frames. Quick point, quick shoot. But if you pause and look, the framing is part of how our brains make sense of everything. Even if you look first then consider your shot and pause to frame it, there is a much richer cognitive process going on and you will remember that shot as you remember the process that went into its capture.

My recipe would be look first, think, frame, shoot and when you get home delete 70% of what you shot. That leaves a genuine curated experience that can be shared. Try it and see if I am correct. A pile of miscellaneous photos of the world that you can’t even remember where they come from, all misaligned, and half out of focus is a travesty not a memory. Two years down the road you won’t even remember which city they came from, there alone, which building.

The skills of curation are critical in a world where everything spills onto your lap minute by minute. It is the search for meaning, and the search for context. It is really important.

Posted on